

SFN synchronisation in complex environments

1° SNIC SEMINAR, Budapest, 22 May 2019 Hanns Wolter, Network Deployment, DAB Italia scpa

Introduction

- DAB Italia scpa
- Territory
- Why SFN???
- Transmitters sites and coverage build-up
- Approach to planning and tools
- Lessons learned

Territory

- Italy has a very complex landscape
- We have...
 - Very large flat areas surrounded by high mountains
 - Lots and lots of hilly terrain
 - Lots of real mountains and deep valleys
 - 2 really big islands: Sardinia and Sicily
 - Lots of smaller islands too...
 - High mountains next to the sea
 - An endless coastline
 - Lots of warm water supporting great propagation effects
 - Many many neighbors!

Transmitter sites

Towers

- Big towers
- Small towers
- Full towers
- Towers which are difficult to reach
-

Ownership

- Big tower companies like EiTowers or INWIT
- Public tower company RaiWay
- Local operators

Coverage build-up

Why SFN?

- 1. Most efficient use of radio spectrum
- 2. Easier HW management
 - 1. Antennas
 - 2. Filters
 - 3. Transmitters
- 3. Network gain and coverage augmentation
- 4. No switching/service following issues on car radios

Network design

- We plan the network accordingly to the strategy decided by the board
- Site evaluation also on site
- Coverage analysis
- Lots of paperwork!

Software approach

- Transmitter sites are always evaluated via software (in our case Aldena EMLAB)
- This tool helps to predict expected coverage, field strengths and population served
- It also allows the design of the antenna system and the step-bystep optimisation
- Software tools also allow SFN analysis

Copertura con antenna ricevente omnidirezionale

Powered by EmLAB - V3.7.1.1
Telecomunicazioni Aldena S.r.l.
DAB ITALIA

Copertura con antenna ricevente omnidirezionale

Powered by EmLAB - V3.7.1.1
Telecomunicazioni Aldena S.r.I.
DAB ITALIA

Copertura con antenna ricevente omnidirezionale

RETENTINE OF 1840 1840 18

Powered by EmLAB - V3.7.1.1
Telecomunicazioni Aldena S.r.I.
DAB ITALIA

Copertura con antenna ricevente omnidirezionale

Powered by EmLAB - V3.7.1.1
Telecomunicazioni Aldena S.r.l.

DAB ITALIA

Lab measurements of "out of SFN" behaviour

LAB configuration	Offset	Relative offset	TX Power in W	C/N local TX	C/N remote TX	Ber	Fieldstrenght	Reception
LAB next to zero	83	8	5	46,1	13,6	0	91	ok
Middle of guard interval	203	114	5	46	13,5	0	91,3	ok
End of guard interval	330	NA (241)	5	37,5	NA	0	91	ok
Far outside guard interval	380	NA (291)	5	37,1	NA	0	91,3	ok

Field measurements of "out of SFN" behaviour

Description	Offset	Offset Relative offset		C/N local TX	C/N remote TX	Ber	Fieldstrenght	Reception
Static – inside guard interval	83	6,5	5	13	38	0	74	ok
Static – outside guard interval	380	Remote: -141us Local: +180us Relative: 321us	5	NA	30	0	74	ok
Static - end of guard interval, different position and power	83	5	20	31	26,4	0	65	ok
Static - end of guard interval	330	Remote: -121us Local: +122us Relative: 243us	20	30	27	10e-5	65	ok
Static – outside guard interval	340	253	20	30	27	10e-2	65	ok

Field measurements of "out of SFN" behaviour while driving

Description	Offset	Relative offset	TX Power in W	C/N local TX	C/N remote TX	Ber	Fieldstrenght	Reception
Car A - Static – outside guard interval	340	253	20	NA	NA	NA	NA	ОК
Car B - Static – outside guard interval	340	253	20	NA	NA	NA	NA	Interruption when local tx becomes predominant

So what???

Lessons learned

- Know your territory
- Know your sites
- Know your tools
- Get rid of FM planning mindset
- Respect the SFN!!!!
- Use simple antenna systems as much as possible
 - Best by experience
 - 1. Dipoles
 - 2. Yagis
 - 3. Panels
 - 4. Logs

Lessons learned

- 1. When planning SFN start simple
- 2. Build, measure, verify
- 3. Extend number of transmitters
- 4. Build, measure, verify
- Make changes and correct "errors"
- 6. Start again from number 3

- Find your MAIN transmitter of the network
- Let all the others follow

 Don't be afraid to make mistakes and to change the planning!

Site selection: my little theory

