

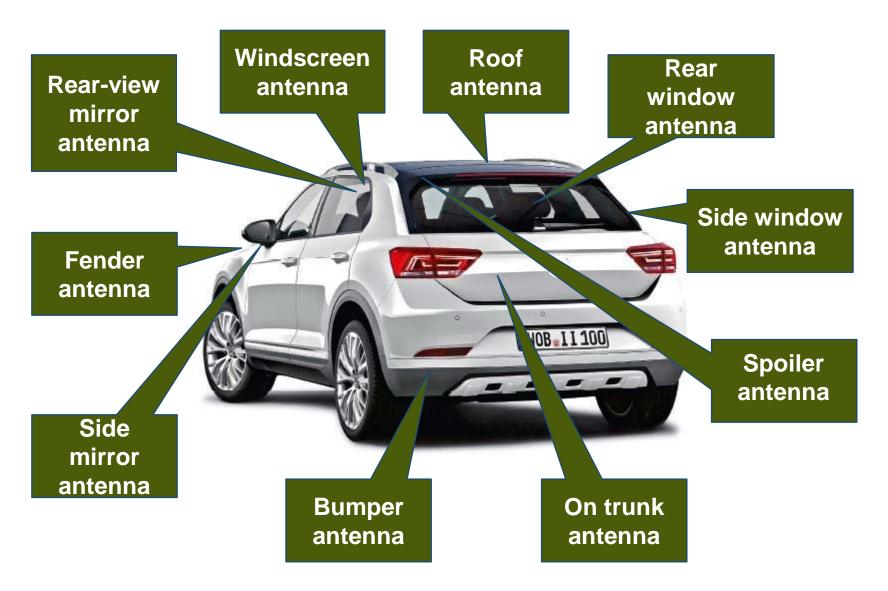
Status quo and trends on in-car DAB reception

Ron Schiffelers WorldDAB Automotive May 15, 2018

WorldDAB Steering Board initiative: performance work group

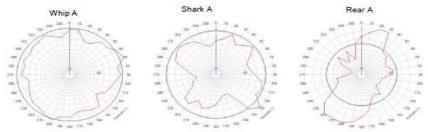
- Part of the UX workgroup
- Performance benchmarks being done in several countries: align and coordinate
- Bringing together experts to address in-car DAB reception challenges
- Clarify required performance levels for car manufacturers (in the drafting stage)
- Alignment meetings with OEMs started
- Define material, support and cooperation to maintain good in-car DAB reception
- Current active members:
 DigitalRadioUK, NRK, DABItalia, SRG, Arqiva, BBC, NXP

DAB reception in cars

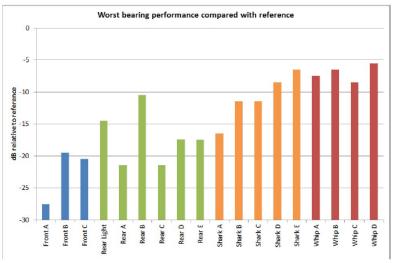

- DAB networks are maturing in many countries (UK, Norway, NL, Germany, Italy, CH, ...)
- Broadcasters utilize the DAB capabilities: more and unique content, audio + visuals
- Latest DAB chips lower cost offering performance and more features & functions
- All signs are on green to offer a good user experience

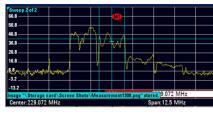
- However, the challenge to get good in-car DAB reception is increasing significantly
- This trend is driven by :
 - increased levels of radio interferences
 - non-rooftop antenna systems with lower sensitivity

Antennas can be all over the car

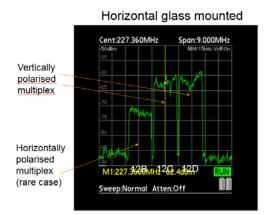


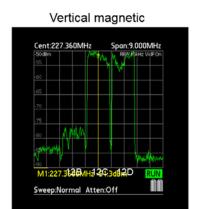
Mostly used locations:


- > Entry level: Roof (rod)
- Main stream: Roof (rod, sharkfin)/Glass
- > Luxury cars: Glass, Sharkfin
- > SUVs: Glass, Sharkfin

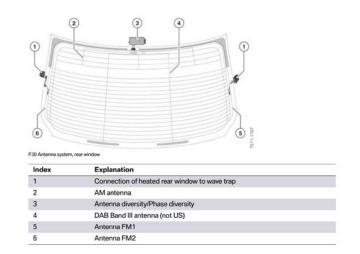

Benchmarks/observations by different WorldDAB members

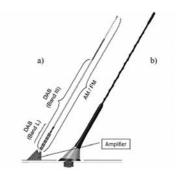
OEM	Issue			
	Antenna	Sensitivity	C/N	PL
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				SRG
12				
13				
14				
15				
16				
17				
18				
19				





Trends and consequences


- "Invisible" antennas → C-class and up
- Antenna design has to follow the constraints defined by vehicle designers
- More and more features → LCD screens, LED lighting, cameras



Increasing design challenge → more (wideband) noise and directivity Lower end cars sometimes outperform higher end cars

Building an automotive car receiver: who's all involved?

Antenna suppliers

Kathrein Fuba Valeo Harada

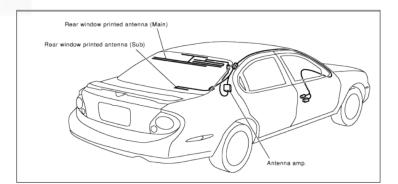
NXP
PNP
SiLabs
ST
TI
Qualcomm
Panasonic

Software suppliers, IP suppliers

Tier-1's

Visteon
Harman
Aptiv
Denso-ten
Continental
Bosch
Alpine

LG
Desay
Hangsheng
Panasonic
Melco
Clarion
Mobis



Automotive OEMs

Design guidelines

- In-car DAB reception: handle it as a system, cooperation through value chain
- Noise: Proper EMC specs for other components
- Directivity and sensitivity: Dual antenna applications

- Issue cannot be solved by "just" increasing broadcasting power
 - Incompatible with (inter)national frequency planning
 - Higher field strength cannot always compensate for lower performance of certain antenna types

Conclusions and how can WorldDAB help?

In-car DAB performance shows a downward trend driven by modern vehicle design constraints

How can WorldDAB help?

- Definition of minimum requirements for receiver system design
- Overview of test routes (input broadcasters/network operators)
- Collaboration on testing methods
- (Field)Test support (NRK, SRG, Arqiva, DAB-Italia)
- Bringing together different players in the value chain

Draft DAB receiver performance in-car specification

- Receiver noise figure (lower than 6dB @ antenna input) for all channels
- Receiver carrier-to-noise ratio (for different protection levels and radio-channels, e.g. for PL3A; 6dB for the gaussian channel, 12dB for the rayleigh channel (11.5dB for the rayleigh channel acc. ETSI TS 103 461 V1.1.1 (2017-08))
- Receiver sensitivity (-97.7dBm) for all channels acc. ETSI TS 103 461 V1.1.1 (2017-08)
- Receiver return loss (> 12dB) for all channels (@ 50 Ohms acc. ETSI TS 103 461 V1.1.1 (2017-08))
- Antenna gain (-5dBd acc. UK planning to -10dBd acc. ETSI TS 103 461 V1.1.1 (2017-08); for channels 5 to 13) / (- 8.1dBi = -10.3dBd)
- Preamplification (gain, noise figure, third order intercept) tbd
- Antenna return loss (> 12dB) (@ 50 Ohms acc. ETSI TS 103 461 V1.1.1 (2017-08))
- Antenna diagramm (horizontal ripple better than 6dB to 9dB for all channels)
- Antenna polarisation (vertical)
- Total man-made noise coupling power from in-car systems (max. -106dBm to -115dBm tbd)
- Level for muting/linking (post Viterbi BER higher than 5*10-3); timedelay for muting/linking; hysteresis
- Receiver selectivity (adjacent channel interference) acc. ETSLTS 103 461 V1.1.1 (2017-08)) (desirable 40dB for N+-1)

SECURE CONNECTIONS FOR A SMARTER WORLD