

DAB+ Digital Radio

Why choose DAB+ for Digital Radio

Dr Les Sabel, WorldDAB Technical Committee

Contents

1. Basics of DAB+

2. Other options

3. Overview of choices

4. Current industry activities

DAB+ basics

- Modulation & Coding robustness vs capacity
- Impact of higher order modulation on power / coverage
- EBU E138 why?

R 138

DIGITAL RADIO DISTRIBUTION IN EUROPE

Immediate deployment be done using DAB transmission as defined in ETSI EN 300 401 with DAB+ services as defined in ETSI TS 102 563 for digital radio broadcasting in VHF Band III;

Other options

- AM
- FM
- DAB+
- DRM30
- DRM+
- ISDB-T
- HD
- P2P streaming
- eMBMS 4G and 5G

Kenneth video clip

Other options

- AM
 - Analogue, Prone to interference and variable coverage
 - No metadata Many receivers but reducing, 1000s
- FM
 - Analogue, variable quality audio
 Many receivers, 1000s
 - Massive congestion
- DAB+

Many receivers and increasing, 100s

- Good balance of reach and robustness
- Targets high capacity areas, typically more than 9 services in the target area
- High quality audio and metadata
- Around 1/10th the cost of FM
- DRM30
 - Long distance and wide area

Very few receivers, slowly increasing <10

- HF band, medium quality audio, low bit rate metadata
- Very expensive and large transmitter systems

Other options

- DRM+
 - Low capacity in VHF, typically 2 services per transmitter
 - Medium to high audio quality and metadata
 - Higher cost than DAB+

Prototype receivers, <5

• HD

Many receivers, 100s

- Struggling in the USA due to business model and content
- IBOC technology challenged
- Auto market starting now
- ISDB-T

- DTV focus not radio

- reducing receivers

- Mobile networks
 - Unicast IP

reducing receivers, <100

Very few but increasing

- Evolved Multimedia Broadcast Multicast Services (eMBMS)

Previous IP studies

- Sweden "Alternative distribution of linear sound broadcasting Broadcasting via mobile networks", a-focus report, October 2013
- Germany "broadcast or broadband?, on the future of terrestrial radio supply", Prof. Dr. Gunther Freidl, March 2014
- Australia "Can mobile networks deliver broadcast radio in Australia?", Prof. Reg Coutts, Coutts Communications, November 2014
- Key findings
 - not cost effective relative to broadcast, especially DAB+ digital radio
 - not free-to-air for listeners
 - not robust in times of emergency
 - not robust in times of user congestion for IP p2p delivery, eMBMS may resolve this issue in some locations if it is only being used for radio.

Previous IP studies

- EBU "Terrestrial distribution vs. online radio", Marcello Lombardo, EBU,
 October 2016 and EBU Technical Review July 2017
- Radio transmission
 - 1) DAB is a much cheaper option than FM, it allows cost sharing due to the MUX
 - 2) DAB cost saving is significant, allows the creation of new content and employment
 - 3) Internet delivery only is not competitive with the current pricing level
 - 4) Internet delivery expense is much higher than its current percentage market share
- Radio listening
 - Internet is now part of everybody's life but mobile broadband is too expensive for media consumption
 - 2) Internet-only delivery would prevent many families from accessing information and entertainment due to a prohibitive access cost
 - 3) The current expense for internet radio listening is much higher than its current percentage market share.
- A DAB backbone with low data hybrid services on top is the way forward.

No radio receivers in handheld devices is a threat to public information.

Cost comparison

Source: EBU Technical Review, Cost-benefit analysis of FM, DAB+ and broadband for radio broadcasters and listeners, July 2017

Summary

- Digital broadcast radio is gradually replacing analogue AM and FM radio
 - Cost effective
 - High quality
 - Flexible metadata features
- DAB+ leads the way forward for medium to high density areas
 - Most cost effective
 - Designed for purpose wide area, mobile, robust, free-to-air
- IP based solutions
 - Are important Black spot coverage, alternative content, flexible
 - Expensive for both broadcasters and listeners

Thank you

For further information, please contact:

www.worlddab.org

or

les.sabel@scommtech.com.au

Summary of studies to date

- Broadcaster costs
 - Support multiple Telcos 3 currently in Australia, soon 4
 - Need to support broadcast (HPHT) until sufficient penetration of LTE-B
 - Approx 66% of listening is fixed, e.g. home and work so will need to provide 66% of delivery via IP streaming – expensive
 - Overall cost to the Broadcaster is prohibitive
- User costs
 - Fixed users will need to have WiFi enabled receivers, this can be phone, PC or standalone IP streaming radio – in general users will need to purchase a new receiving device (as per DAB+)
 - Mobile users will need to have eMBMS enabled smartphone or else will need to use
 IP streaming

Mobile Service provider market share				source: Roy Morgan Research		
Provider	Oct-15	carrier N/W	total carriage	Oct-16	carrier N/W	total carriage
Telstra	39.2	Telstra	43.4	39.1	Telstra	43.5
Optus	24.9	Optus	32.7	24.4	Optus	31.8
Vodafone	18.5	Vodafone	18.5	19.4	Vodafone	19.4
Virgin	4.5	Optus		4.4	Optus	
TPG/iiNET	3.3	Optus		3	Optus	
Amaysim	3.1	Telstra		3	Telstra	
Boost	1.1	Telstra		1.4	Telstra	
ALDImobile	0.9	Optus		1.1	Optus	
other	4.5			4.2		

Summary of studies to date

- Availability
 - Telco infrastructure
 - Telstra reportedly rolling out LTE-B in 2017-18 will become a standard part of their network capabilities
 - Unclear whether this applies to rural areas
 - Receiving devices
 - Split between fixed broadband and mobile broadband
 - Very ow vailability of mobile phones with eMBMS (around 4% of know devices, no iPhone)
- Scalability
 - Minimum and maximum capacity that can be assigned to an eMBMS transmission
 - Synchronisation with other base stations
 - Frequency they operate as an SFN

Time – must be time synchronised so eMBMS symbols must be aligned in the greater transmission frame structure

Summary of studies to date

- Regional impact
 - Limited range due to CP, currently maximum 10kms inter-base station distance
 - Limited and decreasing range due to migration to high frequencies, e.g. 3.6GHz and upwards
- Use and cost
 - Currently mainly proposed for "venuecasting"
 - Some focus on wider area use but business model is unclear

RF path loss due to frequency and distance

