TERRESTRIAL DISTRIBUTION VS. ONLINE RADIO

MARCELLO LOMBARDO (LOMBARDO@EBU.CH) 07 OCT 2016

IS DAB CHEAPER THAN INTERNET RADIO AND FM?

SPOILER ALERT

1) INTERNET RADIO IS EXPENSIVE

2) DAB IS NOT

CONTENT

- **1. SCOPE AND ASSUMPTIONS**
- 2. RADIO DISTRIBUTION COST
- 3. RADIO LISTENING COST
- 4. CONCLUSIONS

1. SCOPE

- To provide an indication of the costs to transmit and to listen to radio
- Not all possible variables are considered
- The big 5 (France, Germany, Italy, Spain, UK) are taken as benchmark

Transmission:

Analysis of the broadcaster costs for distributing radio content on FM, DAB and internet.

Reception:

Analysis the price listeners pay to listen to radio on the move on their favourite platform.

1. KEY PARAMETERS TO CONSIDER AND ASSUMPTIONS

Broadcaster	Listener	
Parameters analysed		
1) Distribution cost (OpEx)	1) Reception cost	
Parameters ignored to simplify the study		
2) Universality	2) Choice	
3) Reach	3) Ease of use	
4) Gatekeepers	4) Quality of reception and availability	

1. KEY PARAMETERS TO CONSIDER AND ASSUMPTIONS

RADIO DISTRIBUTION COST

2. RADIO DISTRIBUTION COST: SCENARIOS DEFINITION

The big 5 European markets as baseline

- EU28 = 510M people
- Big 5 = 321M people (60% of the whole union)

The three scenarios to be defined:

- 1) A radio with national coverage
- 2) A radio with regional coverage
- 3) A radio with coverage of the capital

2. RADIO DISTRIBUTION COST: SCENARIOS DEFINITION

To assess the number of transmitters to ensure coverage for each scenario, we looked at public radios in the Big 5.

The national broadcaster	The regional broadcaster	The local broadcaster
France	Hauts-de-France	Paris
Population: 67M Area: 675417 km ²	Pop: 6M Area: 31713 km ²	Pop: 2.2M Area: 105 km²
Germany	Hessen	Berlin
Pop: 82M Area: 357030 km²	Pop: 6M Area: 21115 km²	Pop: 3.5M Area: 891 km²
Italy	Sicily	Rome
Pop: 61M Area: 301340km²	Pop: 5M Area: 25832 km²	Pop: 2.1M Area: 1287 km ²
Spain	Valencian Community	Madrid
Pop: 46M Area: 504645 km²	Pop: 5M Area: 23255 km ²	Pop: 3.6M Area: 604 km²
UK	South West	London
Pop: 65M Area: 242521 km²	Pop: 5.2M Area: 23829 km ²	Pop: 8.6M Area: 1572 km²
Average	Average	Average
Population: 64.2M	Population: 5.4M	Population: 4M

2. RADIO DISTRIBUTION COST: COST DEFINITION

OPEX

- Energy consumption
- Heat dissipation
- Site maintenance cost
- Site renting cost
- ...

CAPEX

- Transmitter cost
- Tower cost
- Installation cost
 - ...

٠

INPUT

- Number of transmitters
- Transmitter power
- Transmitter energy profile
- Site categorization

2. RADIO DISTRIBUTION COST: FM MODEL

To assess the number of transmitters to ensure coverage for each scenario, the number and types of sites for public radios of the big 5 have been considered:

- France Inter
- Deutschlandradio Kultur
- Radio Rai 1
- Radio Nacional de España
- BBC Radio 1
- ... sites radiation power varies from 1W to 250kW -> need to categorize them

Maintenance and renting categorization:

- 1) Small (1W erp to 999 Watts erp)
- 2) Medium (1kW erp to 99kW erp)
- 3) Large (more than 100kW erp)

Energy consumption and energy dissipation categorization:

1)	1W erp	up to	200W erp	-> 30W TX
2)	200W erp	up to	1kW erp	-> 100W TX
3)	1kW erp	up to	5kW erp	-> 500W TX
4)	5kW erp	up to	15kW erp	-> 1kW TX
5)	15kW erp	up to	50kW erp	-> 5kW TX
6)	50kW erp	up to	150kW erp	-> 10kW TX
7)	more than	150kW	erp	-> 20kW TX

2. RADIO DISTRIBUTION COST: FM MODEL

	The national broadcaster	The regional broadcaster	The local broadcaster
	Coverage: 64.2 millions inhabitants	Coverage: 5.4 millions inhabitants	Coverage: 5.4 millions inhabitants
FM Network	Small sites: 296 Medium sites: 108 Large sites: 10 30W TX: 194 100W TX: 102 500W TX: 102 500W TX: 60 1kW TX: 25 5kW TX: 16 10kW TX: 4 20kW TX: 3	Small sites: 16 Medium sites: 8 Large sites: 2 30W TX: 10 100W TX: 6 500W TX: 4 1kW TX: 2 5kW TX: 1 10kW TX: 2 20kW TX: 0	Small sites: 2 Medium sites: 2 Large sites: 0 30W TX: 0 100W TX: 2 500W TX: 0 1kW TX: 0 5kW TX: 1 10kW TX: 1 20kW TX: 0

2. RADIO DISTRIBUTION COST: DAB MODEL

The procedure followed in the FM case can't be applied for DAB, as nationwide networks with similar coverage are yet to be deployed, therefore precise number of sites and transmitters can't be evaluated.

Reverse engineering a number of real cases:

- On average a DAB network is more dense than a FM network by a factor 1.6
- The total power of a set of DAB transmitters (one or more than one) needed to replace a single FM transmitter can be roughly assessed applying the peak to root mean square factor (about 0.707) and the densification factor to the maximum output power of the FM transmitter

	The national broadcaster	The regional broadcaster	The local broadcaster
	Coverage: 64.2 millions inhabitants	Coverage: 5.4 millions inhabitants	Coverage: 5.4 millions inhabitants
DAB Network	18W rms TX: 194 60W rms TX: 102 300W rms TX: 60 600W rms TX: 25 3kW rms TX: 16 6kW rms TX: 4 12kW rms TX: 3	18W rms TX: 10 60W rms TX: 6 300W rms TX: 4 600W rms TX: 2 3kW rms TX: 1 6kW rms TX: 2 12kW rms TX: 0	18W rms TX: 0 60W rms TX: 2 300W rms TX: 0 600W rms TX: 0 3kW rms TX: 1 6kW rms TX: 1 12kW rms TX: 0

OPEX

Energy consumption per FM transmitter		En	ergy consumption per DAB transmitter
Power	Annual cost of energy (\$0.15 per kW/h)	Power	Annual cost of energy (\$0.15 per kW/h)
10kW	Efficiency: 70% Consumption: 14.2 kW Cost of energy: \$18.77k	6kW rms	Efficiency: 40% Consumption: 15 kW Cost of energy: \$19.71k

Heat dissipation per FM transmitter		Heat dissipation per DAB transmitter	
Power	Annual cost of cooling (\$0.15 per kW/h)	Power	Annual cost of cooling (\$0.15 per kW/h)
10kW	Wasted power: 4.2 kW Cost of cooling: \$5.63k	6kW rms	Wasted power: 9 kW Cost of cooling: \$11.82k

OPEX

Annual maintenance cost per site			
Type of site	FM	DAB	
Small	\$1k		
Medium	\$2.5k	2x the effort for FM 1.6x of the total for FM for densification	
Large	\$5k		

Annual renting cost per site			
Type of site	FM	DAB	
Small	\$3k		
Medium	\$30k	1.6x of the total for FM for densification	
Large	\$50k		

CAPEX

Transmitter cost			Tower cost	per site	
F	м	DAB	Type of site	FM	DAB
Power	Price*		Small	\$10k	
30W	\$1k		Medium	\$75k	0.6x new sites are needed
100W	\$1k		Large	\$120k	
500W	\$5k	(more expensive technology)			
1kW	\$10k	1 6x due to densification		Installation co	st per site
5kW	\$30k	1.0X due to defisiteation	Type of site	FM	DAB
10kW	\$50k		Small	\$5k	
20kW	\$70k		Medium	\$25k	1 6x due to densification
* The numbers	s indicated are a		Large	\$45k	

combination of real prices.

		The national broadcaster	The regional broadcaster	The local broadcaster
FM		Opex= \$6.1M	Opex= \$500k	Opex= \$110k
	Best case	Opex= \$580k	Opex= \$50k	Opex= \$10k
	(full MUX)	Capex= \$1.1M	Capex= \$90k	Capex= \$22k
DAB	Worst case	Opex= \$10.5M	Opex= \$860k	Opex= \$175k
	(Mux not shared)	Capex= \$20.1M	Capex= \$1.6M	Capex= \$395k
	Reasonable case	Opex= \$1M	Opex= \$86k	Opex= \$17k
	(MUX shared with 9 stations)	Capex= \$2M	Capex= \$160k	Capex= \$40k

This is the chosen case for the rest of the document

2. RADIO DISTRIBUTION: FM VS DAB

In case the simulcast would last 10 years, the break even point would be met in about 3 years.

National broadcaster

DAB OPEX (reasonable case)

-Simulcast, FM switch off after 10 years

2. RADIO DISTRIBUTION: INTERNET DELIVERY COST

When it comes to analyse the cost to distribute radio over the internet the first to step is to compute the expected data traffic. The input figures required are: Radio bitrate, Radio listening per day, Population reached

The cost per GB varies according to the traffic.

Customers spending more than \$1M per year 2016:

- on average, customers doing 20PB a month, paying low of \$5k per PB, high \$8k per PB
- on average, customers doing 4-8PB a month, paying low of \$7k per PB, high \$12k per PB

The national broadcaster	The regional broadcaster	The local broadcaster
Radio bitrate: 96kbps Share: 1:30 hours Population: 64.2 M	Radio bitrate: 96kbps Share: 1:00 hours Population: 5.4 M	Radio bitrate: 96kbps Share: 0:50 hours Population: 4 M
Expected traffic: 1518 PB	Expected traffic: 85 PB	Expected traffic: 52 PB
Expected cost: \$9.8M	Expected cost: \$0.8M	Expected cost: \$0.5M

The actual cost depends on the size of the audience and the listening time.

2. RADIO DISTRIBUTION: DAB VS FM VS INTERNET

An internet only delivery is too expensive.

National broadcaster

-----Internet delivery exclusively

2. RADIO DISTRIBUTION: DAB VS FM VS INTERNET

According to statistics, radio listening over the internet is the 8% of the total. With this assumption we can compute realistic expenses for the three scenarios

	The national broadcaster	The regional broadcaster	The local broadcaster
FM	Opex= \$6.1M	Opex= \$500k	Opex= \$110k
DAB	Opex= \$1M	Opex= \$86k	Opex= \$17k
Internet	Online share: 7 minutes	Online share: 5 minutes	Online share: 4 minutes
	Expected traffic: 118.1 PB	Expected traffic: 7.1 PB	Expected traffic: 4.2 PB
	Expected cost: \$765k	Expected cost: \$70k	Expected cost: \$40k

2. RADIO DISTRIBUTION: DAB VS FM VS INTERNET

The next step is to calculate the impact of the chosen technologies combined

RADIO LISTENING COST

3. RADIO LISTENING: COST DEFINITION

When it comes to assess the cost to listen to radio two different figures must be considered.

3. RADIO LISTENING: WHICH DATA PLAN?

Terrestrial Broadcasting
Mobile broadband
Fixed broadband

3. RADIO LISTENING: WHICH DATA PLAN

3. RADIO LISTENING: DAB AND FM VS LTE

Actual expense

4% of Radio consumption is done over mobile broadband ... but it accounts for the 27% of the cost to listen to radio for listeners.

4. CONCLUSIONS

Radio transmission

- 1) DAB is a much cheaper option than FM, it allows cost sharing due to the MUX architecture.
- 2) DAB cost saving is significant and it would allow the creation of new content and employment
- 3) Internet delivery only is not competitive with the current pricing level
- 4) Internet delivery expense is much higher than its current percentage market share

Radio listening

- 1) Internet is now part of everybody's life but mobile broadband is too expensive for media consumption
- 2) Internet-only delivery would prevent many families from accessing information and entertainment due to a prohibitive access cost
- 3) The current expense for internet radio listening is much higher than its current percentage market share.

A DAB backbone with low data hybrid services on top is the way forward.

No radio receivers in handheld devices is a threat to public information.

4. CONCLUSIONS

Need to modernize....

Google search: "kid listening to radio"

Google search: "kid streaming radio"

I don't pay the bill!!

